Algebra 2 Unit 5 Worksheet 6

Solve each equation by completing the square.

1. \(x^2 + 4x - 140 = 0 \)
2. \(x^2 - 6x = -1 \)
3. \(x^2 + 2x + 2 = 0 \)
4. \(x^2 - 8x = -60 \)

Solve by completing the square.

5. \(2k^2 + 16k = -12 \)
6. \(3x^2 + 42x = -24 \)
7. \(4x^2 - 40x - 12 = 0 \)
8. \(3s^2 + 6s + 9 = 0 \)
9. \(7t^2 + 28t + 56 = 0 \)

Find the value of x

10. Area of rectangle = 50

11. Area of parallelogram = 48

\[
\text{Area of rectangle} = \text{length} \times \text{width} = x(x + 10)
\]

\[
\text{Area of parallelogram} = \text{base} \times \text{height} = x(x + 6)
\]

Solve by completing the square.

12. \(4x^2 - 16x - 11 = 0 \)
13. \(2x^2 + 24x = -25 \)
14. \(5x^2 + 10x + 7 = 0 \)
15. \(8x^2 - 48x = -135 \)
16. What is the next step in completing the square to solve \(x^2 + 6x = 1 \) ?
 A. \(x^2 + 6x + 3 = 1 + 3 \)
 B. \(x^2 + 6x + 9 = 1 + 9 \)
 C. \(x(x + 6) = 1 \)
 D. \(x^2 + 6x - 1 = 0 \)
17. What is the next step in completing the square to solve \(4x^2 + 8x = 8 \) ?
 A. \(4x(x + 2) = 8 \)
 B. \(x^2 + 2x = 8 \)
 C. \(x^2 + 2x = 2 \)
 D. \(4x^2 + 8x + \left(\frac{8}{2} \right)^2 = 8 \)
18. What number should be added to both sides to complete the square to solve $x^2 + 16x = 4$?
 A. 4 B. 8 C. 16 D. 64

19. What number should be added to both sides to complete the square to solve $x^2 - 10x = 2$?
 A. 5 B. -5 C. 25 D. -25

20. Which step is the first incorrect step in solving the following equation?
 \[2x^2 + 4x - 6 = 0\]
 Step 1: \[2x^2 + 4x = 6\]
 Step 2: \[x^2 + 2x = 3\]
 Step 3: \[x^2 + 2x + 1 = 3\]
 Step 4: \[(x + 1)^2 = 3\]
 Step 5: \[x + 1 = \pm\sqrt{3}\]
 Step 6: \[x = -1 \pm \sqrt{3}\]
 A. Step 2 B. Step 3 C. Step 4 D. Step 5

21. Which student solved the following equation correctly? $x^2 + 12x = 27$

 Abe
 \[x^2 + 12x = 27\]
 \[x(x + 12) = 27\]
 \[x = 27 \quad \text{or} \quad x + 12 = 27\]
 \[x = 27 \quad \text{or} \quad x = 15\]

 Bill
 \[x^2 + 12x = 27\]
 \[x^2 + 12x + 36 = 27\]
 \[x^2 + 2x + 1 = 3\]
 \[(x + 1)^2 = 3\]
 \[x + 1 = \pm\sqrt{3}\]
 \[x = -1 \pm \sqrt{3}\]

 Charles
 \[x^2 + 12x = 27\]
 \[x^2 + 12x + 36 = 63\]
 \[(x + 6)^2 = 63\]
 \[x + 6 = \pm\sqrt{63}\]
 \[x = -6 \pm 3\sqrt{7}\]

 Dave
 \[x^2 + 12x = 27\]
 \[x^2 + 12x - 27 = 0\]
 \[(x + 3)(x + 9) = 0\]
 \[x = -3 \quad \text{or} \quad x = -9\]