Worksheet 3B

Simplify the following over the real numbers.

1. $\sqrt{4x^2}$
2. $\sqrt{-9x^2}$
3. $\sqrt{x^2 - 16}$
4. $\sqrt{x^2 + 4x + 4}$

5. $\sqrt{x^2 - 8x + 16}$
6. $\frac{3}{27}x^3$
7. $\sqrt[3]{-64x^3}$
8. $\sqrt[3]{(x + 1)^3}$

9. $\frac{3}{2}(x - 5)^3$
10. $\frac{4}{3}(x + 2)^4$

Tell whether the following are true or false for all real values of the variable. If false give a counterexample.

11. $\sqrt{w^2} = |w|$
12. $\sqrt{y^4} = y^2$
13. $\sqrt[3]{k^3} = |k|$
14. $\sqrt[4]{h^4} = h$
15. $\sqrt[5]{m^5} = m$
16. $\sqrt[3]{x}$ is always a real number

17. $\sqrt[3]{x}$ is always a real number
18. $\sqrt{x + 1}$ is always a real number

19. $\sqrt[3]{x + 1}$ is always a real number
20. $\sqrt{x^2 + 1}$ is always a real number

21. $\sqrt[4]{x^2 + 1}$ is always a real number
22. $\sqrt[5]{x}$ is always a real number

For what values of x does each expression represent a real number?

23. $\sqrt{x + 1}$
24. $\sqrt{x - 1}$
25. $\sqrt[3]{x - 1}$

26. $\sqrt{4 - x}$
27. $\sqrt[3]{4 - x^2}$
28. $\sqrt{7 + x}$

Select the correct multiple choice response:

29. Which of the following conclusions is true about the statement below?

$$\sqrt{x^2 + y^2} = x + y$$

A. The statement is always true
B. The statement is never true

C. The statement is true when $x = 0$ and $y = 0$
D. The statement is true when $x > 0$ and $y > 0$

30. Which of the following conclusions is true about the statement below?

$$\sqrt{4 - x^2} = 2 - x$$

A. The statement is always true
B. The statement is never true

C. The statement is true when $x = 0$
D. The statement is true when x is negative
Worksheet 3B (cont)

31. Simplify: \(\sqrt{x^2 + 6x + 9} \)

 A. \(x + 3 \)
 B. \(|x + 3| \)
 C. The statement is true when \(x = 0 \)
 D. The statement is true when \(x \) is negative

32. Which of the following conclusions is true about the statement below?
 \(\sqrt{x} = x^2 \)

 A. The statement is always true
 B. The statement is never true
 C. The statement is true when \(x = 0 \)
 D. The statement is true when \(x \) is positive

33. Which of the following conclusions is true about the statement below?
 \(\sqrt{x} = -8 \)

 A. The statement is true when \(x = 64 \)
 B. The statement is true when \(x = -64 \)
 C. The statement is true when \(x = 64 \) or \(x = -64 \)
 D. The statement is never true

34. Which of the following conclusions is true about the statement below?
 \(\sqrt[3]{x} = -5 \)

 A. The statement is true when \(x = 125 \)
 B. The statement is true when \(x = -125 \)
 C. The statement is true when \(x = 125 \) or \(x = -125 \)
 D. The statement is never true

35. If \(x \) is a real number, which best describes the values of \(x \) for which the inequality \(\sqrt{x} > 0 \) is true?

 A. all \(x > 0 \)
 B. all \(x \geq 0 \)
 C. all values of \(x \)
 D. no values of \(x \)

36. Which statement is true regarding \(\sqrt{x} \)

 A. For all values of \(x \), \(\sqrt{x} \) will have one real value
 B. For all values of \(x \), \(\sqrt{x} \) will have two real values
 C. For all positive values of \(x \), \(\sqrt{x} \) will have one real value
 D. For all positive values of \(x \), \(\sqrt{x} \) will have two real values

37. Which statement is true regarding \(\sqrt[3]{x} \)

 A. For all values of \(x \), \(\sqrt[3]{x} \) will have one real value
 B. For all values of \(x \), \(\sqrt[3]{x} \) will have two real values
 C. For all negative values of \(x \), \(\sqrt[3]{x} \) will have no real values
 D. \(\sqrt[3]{x} \) will have one real value only when \(x = 0 \)