1. What is the common ratio in \(\frac{1}{5}, \frac{2}{25}, \frac{4}{125}, \ldots \)?
 \[\frac{2}{25}, \frac{4}{125} \]
 \(\frac{2}{5} \)
 1. \(\frac{2}{5} \)

2. What is the common difference in \(-2, -5, -8, -11, \ldots\) ?
 \(-3, -3 \)
 2. \(-3\)

3. What type of sequence/series does the following represent?
 \[\sum_{n=1}^{10} (3n-2) \]
 \(1, 4, 7, \ldots \)
 \(r = \frac{1}{3} \)
 3. arithmetic, finite

4. What type of sequence does the following represent?
 a. \(2, -6, 18, -54, 162, \ldots \)
 \(-3, -3 \)
 4a. geo

 b. \(1, 2, 6, 24, 120, \ldots \)
 \(2, 3, 4 \)
 4b. none

 c. \(1, 4, 7, 10, \ldots \)
 \(+3 \)
 4c. arith

5. Insert 3 arithmetic means between 14 and 46.
 \(14, 22, 30, 38, 46 \)
 \(22, 30, 38 \)
 5. \(22, 30, 38 \)

6. Insert one geometric mean between \(\sqrt{2} \) and \(\sqrt{50} \).
 \(\sqrt{25} = 5 \)
 \(\sqrt{\frac{25}{2}} = \sqrt{\frac{10}{2}} = \sqrt{5} \)
 \(2 \sqrt{5} = \sqrt{5} \)
 6. \(\sqrt{10} \)

7. Write the formula for the nth term in \(\frac{3}{1}, \frac{3}{2}, \frac{3}{4}, \ldots \).
 \(a_n = a_1 \cdot r^{(n-1)} \)
 \(r = \frac{1}{2} \)
 \(a_n = 3 \cdot \left(\frac{1}{2} \right)^{(n-1)} \)
 7. \(a_n = 3 \cdot \left(\frac{1}{2} \right)^{(n-1)} \)
8. Write the formula for the nth term in 1, 5, 9, 13, ...
\[a_n = a_1 + d(n-1) \]
\[a_n = 1 + 4(n-1) \]
\[a_n = 4n - 3 \]
\[\sum_{n=1}^{27} 3n + 2 \]
9. 27

10. What are the three geometric means between 5 and 80
\[\sqrt[2]{5, 10, 20, 40, 80} \]
11. What is the 12th term for 1, -4, 16, -64, ...
\[a_n = a_1 \cdot r^{(n-1)} \]
\[a_n = 1 \cdot (-4)^{(n-1)} \]
12. What is the 42nd term of 8, 6, 4, ...
\[a_n = a_1 + d(n-1) \]
\[a_n = 8 + 2(42-1) \]
\[a_n = 8 + 82 \]
\[a_n = 90 \]
13. Find the position of 222 in the sequence 2, 7, 12, 17, ...
\[a_n = a_1 + d(n-1) \]
\[222 = 2 + 5(n-1) \]
\[222 = 5n - 3 \]
\[222 = \frac{5n}{5} \]
14. Rewrite using sigma notation 4 + 9 + 14 + ... + 124
\[\sum_{i=1}^{25} 5n - 1 \]
15. Find the sum of 3 + 6 + 9 + ... + 300
\[S_n = \frac{n(a_1 + a_n)}{2} \]
\[S_n = \frac{100(3 + 300)}{2} \]
\[S_n = 15, 150 \]
16. Find the sum of \(2 + (-1) + \frac{1}{2} + (-\frac{1}{4}) + \ldots\)

\[k = \frac{1}{2}, \quad S_n = \frac{a_1}{1-r} = \frac{\frac{2}{3}}{2} = \frac{2}{3} \times \frac{3}{2} = \frac{1}{3} \]

17. Stanley spent 8 minutes cleaning out his closet on the first day of vacation. For each of the next 7 days, he spent 5 more minutes than he had the day before. Including the first day of vacation, how many total minutes did Stanley spend cleaning out his closet?

\[a_1 = 8, \quad 13, 18, 23, 28, 33, 38, 43 \quad \sum_{n=1}^{50} n(n+50) = 204 \]

\[S = \frac{48(8+43)}{2} \quad 4(51) = 204 \]

18. Find the sum of \(\sum_{n=1}^{50} 1, 2, 3, \ldots, 50\)

\[S_n = \frac{n(a_1+a_n)}{2} = \frac{25}{50(1+50)} = \frac{25(51)}{2} \]

19. Write in Sigma Notation: \(-3 + (-1) + 1 + 3 + \ldots + 23\)

\[\frac{14}{2} \geq 2n - 5 \quad \sum_{n=1}^{20} (-3 + 2(n-1)) = \frac{14}{2} \cdot \frac{14}{2} \cdot \frac{25}{2} \]

20. What is the sum of the infinite geometric series in which \(a_1 = 12\), and \(r = \frac{1}{2}\)

\[S_n = \frac{12}{1 - \frac{1}{2}} = \frac{24}{2} = 12 \]

21. Given an arithmetic sequence in which: \(a_6 = 39\), and \(a_{14} = 79\)

\[a_n = a_1 + d(n-1) \]

\[39 = a_1 + d(6-1) \quad 79 = a_1 + d(14-1) \]

\[a_1 = 14 \quad d = 5 \]

22. Write \(12121212\ldots\) as a fraction reduced to lowest terms

\[\frac{12}{99} = \frac{4}{33} \]